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Summary 

 

Traditional manual methods of corrosion and rust detection in ships' hulls, metal construction 

buildings, and bridges are not only time-consuming and costly but also prone to inaccuracies. Manual 

inspection heavily relies on the skill and experience of inspectors, and even minor mistakes during the 

process can have significant consequences. While manual inspection can be partially replaced by drones 

or robot divers capturing images from various angles, fully analyzing the condition and identifying 

damaged surfaces can still require extensive time and resources from engineering teams. Moreover, 

overlooked surfaces can lead to critical problems over time, necessitating regular inspection intervals.  

To address these challenges, the aim is to develop a Convolutional Neural Network (CNN) model 

using TensorFlow and Keras for corrosion detection in images. Objectives include explaining the 

operations and calculations in deep learning neural networks required for image recognition, analyzing 

traditional visual inspection methods in the industry, and comparing them with the advantages and 

disadvantages of the CNN model.  

Visual inspection remains essential for identifying and evaluating surface flaws such as corrosion, 

contamination, irregular surface finish, and joint discontinuities. It is particularly effective in detecting 

critical surface cracks associated with structural failure mechanisms. Visual inspection methods utilize 

various equipment, from naked eye observation to interference microscopes, depending on the product 

and surface flaw type. By implementing CNN models for corrosion detection, the efficiency and accuracy 

of inspection processes can be significantly enhanced, ultimately improving maintenance practices in 

various industries. 
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Introduction 

 

Corrosion and rust detection in hull of the ships, metal construction buildings or bridges manually 

without any computer vision or inspection are time consuming process and extremely expensive, 

nevertheless, most of the time it will not be accurate comparing with what deep learning models enable to 

inspect. Manual inspection’s result depends on skill and experience of inspectors, and any even small 

mistake made during the inspection process can cause terrific consequences in the future and that is 

critically important. The manual inspection can be replaced partly by drones or robot divers taking pictures 

of different angles, and after composing all pictures, inspectors are able to go through all collected pictures 

and determine where surface is damaged by rust and where repairing is necessary. Fully analyze condition 

and determine damaged surfaces can take hundreds of hours by engineering teams, anyway, after some 

time not spotted surfaces will cause critical problems, that is why most inspection must be implemented 

over and over again by some period of time.  

Aim: Develop a Convolutional Neural Network (CNN) model using TensorFlow and Keras 

for corrosion detection in images. 

Objectives – explain operations and calculations in deep learning neural networks necessary 

for image recognition, analyze visual inspection methods in industry and compare it with created 

model by approving advantages or disadvantages of CNN model. 

Requirements and Technical Specifications: Create a CNN model that can accurately detect 

corrosion in images. 

Visual inspection is essential for identifying and evaluating surface flaws such as corrosion, 

contamination, irregular surface finish, and joint discontinuities (e.g., welds, seals, solder connections). It 

is especially effective in detecting critical surface cracks associated with structural failure mechanisms. 

Even when other inspection techniques are used, visual inspection often complements them. For example, 

during eddy current examination of process tubing, visual inspection verifies surface disturbances. Acid 

etching (macroetching) can also reveal structures invisible to the naked eye, as shown in Fig. 1. Different 

techniques are employed depending on the product and surface flaw type. Visual inspection methods 

utilize various equipment, from naked eye observation to interference microscopes for measuring scratch 

depth on polished surfaces. 
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1. Artificial Intelligence Implementation and  

Concept of Neural Networks  

 

Nowadays artificial intelligence has developed to the level where human behavior can be easily 

manipulated and be repeated, it can deal with most difficult task where human has struggle to complete it 

or even is not able to understand it. Ability to cope with enormously complex difficulties lead to rapid 

growth in many industry fields, thus technology do not require additional work force, can be implemented 

without any big amount of an investment and can be customize or adjust in many ways. Artificial 

intelligence let to expand humanity to exceptional possibilities such as autonomous self-driving cars, 

natural language processing (NPL), image - language translations, demographic predictions and etc. In 

manufacturing processes AI is helping with visual recognition, defects detection, sound analyzing and in 

other fields.  The concept of Artificial Intelligence is defined by ability which enables computers to mimic 

human behavior, however, AI cannot perform without its main core - machine learning which gives ability 

to learn without being programmed to do exact task and deep learning which make the computation of 

multi-layer neural networks feasible. To understand functionality and features of whole computational 

process of artificial intelligence it is necessary to analyze deep learning and its neural networking. 

 

Figure 1. Hierarchy of artificial intelligence, machine learning and deep learning. 

https://blogs.oracle.com/bigdata/difference-ai-machine-learning-deep-learning 
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1.1. Development period of Neural Networks 

Neural Networks (NN) are computational models to manipulate the human nervous system 

functionality [3]. First model concept was announced and 

suggested in 1943 by W. S. McCulloch and W. H. Pitts. 

The model was described as “nets with alterable synapses” 

[4], where it is created by two different binary states in which 

the neuron has excitation synapses and can be activated by it, 

otherwise, using inhibitory synapses, can be deactivated. If 

the summation of the states x1 and x2, u, is more than the threshold (θ) then the output will be one, otherwise 

the output will be zero [equation 1] 

𝑓(𝑢) = {
0 ∶ 𝑖𝑓  𝑢 ≥ 𝜃
1 ∶ 𝑖𝑓  𝑢 < 𝜃

  

 

In 1949 Canadian psychologist Donald Hebb described the 

concept of Hebbian learning of NN model in the book “The 

Organization of Behavior”.  

Hebbian learning can be defined as the set of rules, according to 

which the weight associated with a synapse increases 

proportionally to the values of the pre-synaptic and postsynaptic 

stimuli at a given instant of time (fig. 3), by considering a linear 

neuron, therefore the output y is a linear combination of its input 

values x [equation 2]. 

𝑦 = ∑𝑤𝑖𝑥𝑖

𝑛

𝑖=1

 

 

1.2. Frank Rosenblatt’s Perceptron 

In 1958 the perceptron was developed by the American psychologist Frank Rosenblatt. The 

concept of perceptron came from brain’s neuron as the systems algorithm which classifies placed input 

and differs it into two different categories. The main reason was to implement an algorithm which is able 

Figure 2. The neural network model of McCulloch and Pitts. [] 

Equation 1. Activation and deactivation function of the neuron. [] 

Figure 3. Hebbian learning model, where many inputs come out 

with a single output in one neuron. 

[[https://www.bonaccorso.eu/2017/08/21/ml-

algorithms-addendum-hebbian-learning/ ]] 

Equation 2. Linear equation of Hebbian learning. 

https://www.bonaccorso.eu/2017/08/21/ml-algorithms-addendum-hebbian-learning/
https://www.bonaccorso.eu/2017/08/21/ml-algorithms-addendum-hebbian-learning/
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to understand and learn from the values of given weights w, where those weights are multiplied with 

applied input characteristics in order to come up with decision that is suitable or inappropriate, for making 

pattern classification useful by determining that applied data belongs to set of the class or not. Frank 

Rosenblatt’s perceptron functionality depends on the unit step function (Heaviside step function) where 

output is labeled as the positive and negative class in binary classification where 1 and -1 is generated 

respectively. Activation function g(z) must be define that takes a linear combination (where classes can 

be separate by one line) of the input values x and weights w as input (z = w1x1+⋯+wmxm), and if g(z) is 

greater than a defined threshold θ we predict 1 and -1. 

 

Figure 4. Example of a linear decision boundary for binary classification [] 

𝑔(𝒛) = {
1 𝑖𝑓 𝑧 ≥ 𝜃      

−1 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Equation 3 [] 

𝒛 =  𝑤0𝑥0 + 𝑤1𝑥1 + ⋯+ 𝑤𝑚𝑥𝑚 = ∑𝑥𝑗𝑤𝑗 = 𝑤𝑇

𝑛

𝑖=0

𝑥 

Equation 4 [] 

Weight w is the attribute of the vector, x is a quantity of numerical value of the m-dimensional sample 

from the training dataset: [fig. 6]  

𝑤 = [

𝑤1

…
𝑤𝑚

]  𝑥 = [

𝑥1

…
𝑥𝑚

] 

Equation 5 

The implementation process of the notation is to define θ point which is moved to the side as shown in 

the graph [fig. 8] and define w0 = −θ and x0 = 1. 
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Figure 5 

In order to come up with an output of the perceptron it must receive multiple signals which are 

calculated in certain threshold where the signal will not summon any reaction and remain still or it will be 

assumed as impactful product of numerical data. That was the idea of the perceptron algorithm [fig. 8] 

where computation of the weights as signals cause ability to learn by drawing linear decision boundary 

that allows  to discriminate between the two linearly separable classes +1 and -1. 

 

Figure 6. Rosenblatt’s perceptron 

Rosenblatt’s perceptron rule can be defined and implemented with few following steps:  

Initialize the weights to 0 or small random numbers. 

1. For each training sample x(i): 

1. Calculate the output value. 

2. Update the weights. [] 

The value of the output is predicted by class label in the unit step function (defined output as shown in the 

equation) and in order to define weight’s update, equation is expressed: 



8 

 

𝑤𝑗 = 𝑤𝑗 + ∆𝑤𝑗 

Equation 6 

The process of weights updating every time when increment is changed can be defined by the learning 

rule: 

∆𝑤𝑗 =  𝜂(𝑡𝑎𝑟𝑔𝑒𝑡(𝑖) − 𝑜𝑢𝑡𝑝𝑢𝑡(𝑖))𝑥𝑗
(𝑖)

   

Equation 7 

Where symbol eta (η) is the learning rate and the value of it cannot exceed 1 or be below 0 and known as 

constant between those two numbers, (a constant between 0.0 and 1.0), “target” (Y) is the true class label, 

the “output” (Ŷ) is the predicted class label []. All weights of the vectors are simultaneously updated and 

then further operation is proceeded. For two dimensional perceptron update is written as shown in equation 

8; 9; 10 respectively: 

∆𝑤0 =  𝜂(Y(𝑖) − Ŷ(𝑖)) 

Equation 8 

∆𝑤1 =  𝜂(Y(𝑖) − Ŷ(𝑖))𝑋1
(𝑖)

 

Equation 9 

∆𝑤2 =  𝜂(Y(𝑖) − Ŷ(𝑖))𝑋2
(𝑖)

 

Equation 10 

The equation of the perceptron learning rule can be easily tested by adding weights, in the equations 11 

and 12 are shown the perceptron predictions when the class labels were correctly classified and the weights 

will remain the same and none change will occur: 

∆𝑤𝑗 =  𝜂(−1(𝑖) − − 1(𝑖))𝑥𝑗
(𝑖) = 0 

Equation 11 

∆𝑤𝑗 =  𝜂(1(𝑖) − 1(𝑖))𝑥𝑗
(𝑖) = 0 

Equation 12 

Sometimes problems occur when weights are over-pushed towards positive or negative positions 

respectively to the target:  
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∆𝑤𝑗 =  𝜂(1(𝑖) − − 1(𝑖))𝑥𝑗
(𝑖) = 𝜂(2)𝑥𝑗

(𝑖)
 

Equation 13 

∆𝑤𝑗 =  𝜂(−1(𝑖) − 1(𝑖))𝑥𝑗
(𝑖) = 𝜂(−2)𝑥𝑗

(𝑖)
 

Equation 14 

The Convergence of the perceptron only possible with two linearly separable classes, if those two classes 

cannot be split by a linear decision boundary into two groups, the maximum passes (threshold) of the 

given dataset should be defined for the most accuracy of the decision boundary.  

1.3. Adaptive Linear Neurons and the Delta Rule 

The Adaptive Linear Neuron (most known as Adaline) is a binary classification algorithm and a single 

layer neural network. Adaline was published by Bernard Widrow and his doctoral student Tedd Hoff (in 

1960) after Rosenblatt’s perceptron algorithm. 

Importance of Adaline is for better understanding and improvement of machine learning algorithms in the 

main concept by acquiring minimized the continuous cost function. The difference between Perceptron 

and Adaline is that the weights in Adaline are updating on a linear activation function (fig. 7), where with 

perceptron the unit step function is used. 

Linear activation function (equation 15) in Adaline is the net input equals to its own identity function 

(equation 16): 

 

Figure 7 

𝑔(𝑧) =  𝑧 

Equation 15 

𝑧 =  𝑤𝑇𝑥 

Equation 16 
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The most important advantage the linear activation function has over the perceptron unit step function is 

that it is differentiable [X]. The ability to differentiate allows to minimize the cost function J(w) in order 

to increment and update given weights. The cost activation function J(w) is defined as the sum of squared 

errors (SSE), which is similar to the cost function that is minimized in ordinary least squares (OLS) linear 

regression [X] as shown in the equation 19. 

𝐽(𝑤) =
1

2
∑(Y(𝑖) − Ŷ(𝑖))2

𝑖

 

Equation 17 

Gradient descent is used for minimization of SSE cost function which is mostly use in machine learning 

field to find the local minimum of linear systems.  

To understand how gradient descent is able to find local minimum, the convex function for one single 

weight must be generated and as shown in the figure 8, gradient descent is moving down until global or 

local minimum is found. At every step, the opposite direction of the gradient is taken, and the step size is 

determined by the value of the learning rate as well as the slope of the gradient. 

 

Figure 8 

To derive the Adaline learning rule, as shown previously, each step is updated and taken by moving into 

opposite direction of the gradient 𝛥𝑤 = −𝜂𝛻𝐽(𝑤), hence, it is necessary to calculate the partial derivative 

of the cost function for each weight in the weight vector: 𝛥𝑤𝑗 = −𝜂
𝜕𝐽

𝜕𝑤𝑗
. 

The calculation of partial derivative for the SSE cost function of the exact weight can be obtained (where 

Y = target, o = output) as follows: 
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𝜕𝐽

𝜕𝑤
= 

1

2

𝜕

𝜕𝑤𝑗
∑(Y(𝑖) − 𝑜(𝑖))

2

𝑖

=
1

2
∑

𝜕

𝜕𝑤𝑗
𝑖

(Y(𝑖) − 𝑜(𝑖))2 =
1

2
∑2(Y(𝑖) − 𝑜(𝑖))

𝑖

𝜕

𝜕𝑤𝑗
(Y(𝑖) − 𝑜(𝑖))

2

= ∑(Y(𝑖) − 𝑜(𝑖))

𝑖

𝜕

𝜕𝑤𝑗
(Y(𝑖) − ∑𝑤𝑗𝑥𝑗

(𝑖)

𝑖

) = ∑(Y(𝑖) − 𝑜(𝑖))(𝑥𝑗
(𝑖)

)

𝑖

 

Equation 18 

By moving in direction (Y(𝑖) − 𝑜(𝑖))(𝑥𝑗
(𝑖)

) increases error, so the opposite direction (𝑜(𝑖) − Y(𝑖))(𝑥𝑗
(𝑖)

)  

By adding obtained result into learning rate the equation is derived as follows:  

∆𝑤𝑗 = −𝜂
𝜕𝐽

𝜕𝑤𝑗
= −𝜂 ∑(𝑡(𝑖) − 𝑜(𝑖))(−𝑥𝑗

(𝑖))

𝑖

= 𝜂 ∑(𝑡(𝑖) − 𝑜(𝑖))

𝑖

𝑥𝑗
(𝑖)

 

Equation 19 

After calculation, simultaneous weight update can be applied with perceptron rule: 

𝑤𝑗 = 𝑤𝑗 + ∆𝑤𝑗 

Equation 20 

The learning rule and the perceptron rule are identical, however, there are two main differences why it 

cannot be considered the same: 

1. The symbol “o” has value as a real number and not a class label as in the perceptron learning rule.  

2. The weight update is calculated based on all samples in the training set (instead of updating the 

weights incrementally after each sample), which is why this approach is also called “batch” 

gradient descent. 

 

1.4. Multi-layer neural networks 

A multi-layered perceptron (abbreviation MLP) is mostly used neural network in deep learning from all 

known neural networks even nowadays. MLP ability to solve the variety of problems is highly preferable 

in many areas such as stock prediction and analysis, classification and identification of images, unwanted 

detection of spam, and even in voting predictions. The story of multi-layered perceptron has begun in 

1986 when Geoffrey Hinton, David Rumelhart, and Ronald Williams published a paper “Learning 

representations by back-propagating errors”, which introduced: 

1. Backpropagation, a procedure to repeatedly adjust the weights so as to minimize the difference 

between actual output and desired output 
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2. Hidden Layers, which are neuron nodes stacked in between inputs and outputs, allowing neural 

networks to learn more complicated features 

Explaining multi-layer neural networks and obtaining output for input data set 𝑋: 𝑥1, 𝑥2, … , 𝑥𝑚  , with 

weight set 𝑊1 ∶ 𝑤
1

1
, 𝑤

1

2
, … , 𝑤

1

𝑚
 , by summing up given data and adding bias result is: 

𝑧 = ∑𝑤𝑖𝑥𝑖 + 𝑏𝑖𝑎𝑠

𝑚

𝑖=1

 

Equation 21 

After obtaining numerical value of z an activation function f(z) is applied for the first hidden layer’s neuron 

ℎ
1

1
, where ℎ

1

1
= 𝑓(𝑧) and 𝑓(𝑧) cannot be step function. The calculation must be repeated for the second 

hidden layer’s neuron ℎ
1

2
 which is construct by 𝑊2 ∶ 𝑤

2

1
, 𝑤

2

2
, … , 𝑤

2

𝑚
.  It must be applied for every neuron 

using input data 𝑊𝑛 ∶ 𝑤
𝑛

1
, 𝑤

𝑛

2
, … , 𝑤

𝑛

𝑚
,  then action is continuously used for other hidden layers and 

neurons as shown in figure 9 to obtain final output ŷ. 

 

Figure 9. Neural network with 2 hidden layers [] 

By explaining why step function is not usable in multi-layer neural networks, because result will 

be only 0 or 1, where other activation functions such as sigmoid, tanh or relu are able to extract value 

between 0 and 1 which gives possibility to group features by numerical values. This feature is especially 

helpful in prediction of the output where result is decided by set of the value and the only way to be 

approved is to reach the fixed boundaries.  By using sigmoid activation function, everything that is in 

range between 0 and 1 without any negative value, output is obtained by sigmoid properties:  

1. The function itself is differentiable (the slope of two given points in the sigmoid curve is easily 

found). 

2. The derivative of the function is not monotonic, but the function itself is monotonic. 
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3. Continuous phase of the output when 0 ≤ 𝑓(𝑧)  ≤  1. 

4. Whenever output stays positive and by summing up obtained outputs value is equal to 1, 0 ≤

 𝑓(𝑧) ≤  1 

𝑓(𝑧) =
1

1 + 𝑒(−𝑧)
 

Equation 22 

 

Figure 10. Sigmoid (logistic regression) function [] 

Other activation function is tanh (hyperbolic tangent activation function). Tanh has the same 

features such sigmoid, but the function range is from -1 to 1, and tanh has the same shape (stays sigmoidal) 

as sigmoid which allows to extract values in the same way and the negative value of the inputs will be 

mapped strongly negative and the zero inputs will be mapped near zero in the tanh graph []: 

1. The function itself is differentiable (the slope of two given points in the sigmoid curve is easily 

found). 

2. The derivative of the function is not monotonic, but the function itself is monotonic. 

3. The tanh function is mainly used classification between two classes []. 

4. Continuous phase of the output when, −1 ≤  𝑓(𝑧)  ≤  1 

 

𝑓(𝑧) = tanh (𝑧) 

Equation 23 
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Figure 11. Tanh (hyperbolic tangent) activation function [] 

The most popular activation function is ReLU (rectified linear unit) activation function. The ReLU 

is half rectified it means that the function with negative value is always obtaining 0, when function is 

positive and value is above or equal to zero, function produce numerical value (equation 24) and it has 

range from 0 to infinity. Some other features of rectified linear unit activation function: 

1. The function and its derivative both are monotonic. 

2. Any feed with positive numerical value returns the same  

3. ReLu overcomes the vanishing gradient problem, allowing models to learn faster and perform 

better. 

𝑓(𝒛) = {
0   𝑖𝑓 𝑥 < 0 
𝑥   𝑖𝑓 𝑥 ≥ 0

 

Equation 24.  

 

Figure 12. ReLU (rectified linear unit) activation function [] 

The issue of the rectified linear unit activation function is inability to processed all the given data, because 
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all values with negative output is vanished and the model is unable to properly use data and train from it. 

Thus, data is deleted immediately, ReLu activation function plots graph by not mapping the negative 

values appropriately. 

Comparing Adaline (use linear unit step activation function in the figure 13. pic. 1) and multi-layer 

neural networks (use non-linear activation function such as sigmoid, tanh, relu in the figure 13. pic. 2), 

the obtained result shows that with multi-layer neural network complex problems are solved much better 

and it gives possibility to create complex, non-linear decision boundaries that allow us to tackle problems 

where the different classes are not linearly separable. 

 

Figure 13. Comparison of Adaline (1) and multi-layer neural networks ability (2) to solve problems. 

1.5. Recurrent neural network 

Recurrent neural networks (abbreviation RNN) is the algorithm of sequential data, this is the first 

algorithm that remembers its input, due to an internal memory, which makes it perfectly suited for machine 

learning problems that involve sequential data. RNN history begins in 1980, however, lack of 

computational power recurrent neural networks were not able to spread in popularity and were not very 

applicable. After ten years, in 1990, when computers became more powerful along with necessity of data 

collection and new RNN’s model were created - long short-term memory (LSTM), which started to show 

real potential of RNN application. Internal memory capacity allows RNN’s to recognize and remember 

important information from the given input and reuse it whenever acquired data is useful. This feature 

allows to produce very accurate and precise output and predict what choice should be selected next that is 

why RNN is the preferred algorithm for sequential data like time series, speech, text, financial data, audio, 

video, weather and much more. The sequence and context can be more analyzed and understood much 

deeper comparing with other algorithms, because of its hidden state and information flow typically as 

follows (figure 14):  
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Figure 14.  

For each timestep t, the activation at and the output yt are expressed as follows (equation 25 and 26): 

𝑎𝑡 = 𝑔1(𝑊𝑎𝑎𝑎(𝑡−1) + 𝑊𝑎𝑥𝑥
𝑡 + 𝑏𝑎) 

Equation 25. 

𝑦𝑡 = 𝑔2(𝑊𝑦𝑎𝑎(𝑡) + 𝑏𝑎) 

Equation 26.  

Where 𝑊𝑎𝑥,𝑊𝑎𝑎,𝑊𝑦𝑎, 𝑏𝑎, 𝑏𝑦 – coefficients, 𝑔1, 𝑔2, - activation functions []. 

A recurrent neural network can repeatedly teach itself with multiple generated product in the same node 

by going through cycles and passing a message. Analyzing the recurrent neural network’s recursive 

relationship, its process must be divide into three unit weights: one for the inputs 𝑥(𝑡), another for the 

outputs of the previous time step 𝑦(𝑡), and the other for the output of the current time step 𝑎(𝑡) []. The 

weights are the same as in perceptron or multi-layer neural network, and those parameters transforms data 

form input to network hidden layer in training process (figure 15): 

 

Figure 15. 
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To optimize algorithm, the function evaluation in the set of weights is referred as the objective 

function. The method to minimize the error where the inputs in objective function are increase or decrease 

in order to match distribution of the target variable and optimize the process, called a cost function (loss 

function), and numerical value calculated in that difference is named as loss. Cost function in the recurrent 

neural network is defined in all timesteps as the loss for every timestep as follows (equation 27) []: 

ℒ(ŷ, y) =  ∑ℒ(ŷ𝒕, y𝑡)

𝑇𝑦

𝑡=1

 

Equation 27 

Other necessary application of recurrent neural network is backpropagation through time 

(abbreviation BPTT), it is a process of the backpropagation training algorithm in RNN where the sequence 

is using gradient descent to calculate an error. A recurrent neural network is shown one input each timestep 

and predicts one output. It works by unrolling all input timesteps, each timestep has one input timestep, 

one copy of the network, and one output [https://machinelearningmastery.com/gentle-introduction-

backpropagation-time/]. Errors are formed during each timestep and afterwards calculation is applied. The 

whole system’s loop is back to the start and weights are upgraded. Backpropagation is done at each point 

in time, at timestep T, the derivative of the loss ℒ with respect to weight matrix W is expressed as follows 

(equation 28): 

𝜕ℒ𝑇

𝜕𝑊
= ∑

𝜕ℒ𝑇

𝜕𝑊

𝑇

𝑡=1

 

Equation 28 [] 

In purpose to solve gradient problem particular gates can be used for any kind of RNN 

implementation. Gates are designated as gamma Γ and are written in form as follows (equation 29): 

Γ = 𝜎(𝑊𝑥𝑡 + 𝑈𝑎(𝑡−1) + 𝑏 

Equation 29 [] 

Where 𝑊,𝑈, 𝑏 are coefficients specific to the gate and σ is the sigmoid function []. Most common used 

are shown in the table 1: 
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Type of gate Role Used in 

Update gate Γ𝑢 How much past should matter now? GRU, LSTM 

Relevance gate  Γ𝑟 Drop previous information? GRU, LSTM 

Forget gate Γ𝑓 Erase a cell or not? LSTM 

Output gate Γ𝑜 How much to reveal of a cell? LSTM 

Table 1. [] 

Two types of gating are used – Gated Recurrent Unit (GRU) and Long Short-Term Memory units 

(LSTM) to handle the vanishing gradient problem in RNN, where GRU is not that complex, has forget 

gate, is faster, however it has less parameters comparing to LSTM (it has output gate). The structure and 

equations of GRU and LSTM are listed in the table 2.  

Characterizati

on 

Gated Recurrent Unit (GRU) Long Short-Term Memory (LSTM) 

ĉ tanh(𝑊𝑐[Γ𝑟 ∗ 𝑎(𝑡−1), 𝑥𝑡 + 𝑏𝑐) tanh(𝑊𝑐[Γ𝑟 ∗ 𝑎(𝑡−1), 𝑥𝑡 + 𝑏𝑐) 

c𝑡 Γ𝑢 ∗ ĉ𝑡 + (1 − Γ𝑢) ∗  𝑐(𝑡−1) Γ = 𝜎(𝑊𝑥𝑡 + 𝑈𝑎(𝑡−1) + 𝑏 

a𝑡 c𝑡 Γ𝑜 ∗ c𝑡 

Dependencies 

  

Table 2.[] 

Recurrent neural networks are solving most difficult problems in nowadays artificial intelligence 

world, its applications provide more efficient and accessible solutions for IT and engineering 

infrastructures, however, gradient vanishing problem remains important, where information vanish and 

become insignificant in a long term. Some pros and cons are listed in table 3: 
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Advantages Drawbacks 

• Possibility of processing input of any length 

• Model size not increasing with size of input 

• Computation takes into account historical 

information 

• Weights are shared across time 

• Computation being slow 

• Difficulty of accessing information from a long 

time ago 

• Cannot consider any future input for the current 

state 

Table 3 [] 
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Tensorflow  

Machine learning is a complex web of mathematical calculations, data flows, system analyzes and 

other difficult representation of calculus, however, implementing models with existing libraries and 

frameworks is more convienient than calculate every step from beginning, one common used open source 

platform is Tensorflow created by Google. The process facilitation is uncomparible faster in terms of  

acquiring data, training models, serving predictions, and refining future results 

[https://www.infoworld.com/article/3278008/what-is-tensorflow-the-machine-learning-library-

explained.html]. TensorFlow is an open source library which is being used for numerical computation and 

processes implementation and testing in machine learning. It creates complete loop between models input 

and computes output by using Python programming language to provide a convenient front-end API for 

building applications with the framework, while executing those applications in high-performance C++ 

language []. TensorFlow able to train and activate calculations in deep neural networks for digital 

classification, natural language processing and words predictions with embeddings, recurrent neural 

networks, image recognition solutions, sequence to sequence models for machine translation, natural 

language processing, and PDE (partial differential equation) based simulations [], image recognition and 

best of it, TensorFlow use same training models to provide production prediction at scale. Instead of 

dealing with the complex mathematical calculations of implementing algorithms, it gives possibility to 

fully focus on the overall problem, and not waste time for unnecessary details where Tensorflow can 

solved it immediately. 

By understand Tensorflow functionality and how to derive to machine learning algorithm, tensor 

notion must be defined. Tensor in m-dimensional space is a mathematical object that has n indices and mn 

components and obeys certain transformation rules, where each index of a tensor ranges over the number 

of dimensions of space [https://mathworld.wolfram.com/] in other words, multilear charts from a vector 

space into the real number is described as a tensor. Tensors are defined in mathematical concept as follows:  

Scalars – single elements of a number fields (example no.1 shown in figure 1.). Expressed by the 

formula in equation 1, where ℝ is a real number, 𝑒1 is base and c is a scalar. 

𝑓:ℝ →  ℝ, 𝑓(𝑒1) = 𝑐 

Equation 30 

Vectors – quanities with magnitude and directions (example no.2 shown in figure 1). Expressed 
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by the formula in equation 2, where ℝ is a real number, and ℝ𝑛 is an element size, 𝑒1 is base, 𝑣1 is a 

vector.  

𝑓:ℝ𝑛  →  ℝ, 𝑓(𝑒1) = 𝑣𝑖 

Equation 31 

Matrices – collection of numbers in rows and columns (example no.3 shown in figure 1). 

Expressed by the formula in equation 2, where ℝ𝑛, ℝ𝑚 are element sizes, 𝑒1, 𝑒𝑗 are basis, 𝐴𝑖𝑗 is a scalar. 

𝑓:ℝ𝑛 ∗  ℝ𝑚 →  ℝ, 𝑓(𝑒1, 𝑒𝑗) = 𝐴𝑖𝑗 

Equation 32 

Multidimensional array of numbers – one-dimensional arrays presented in relational tables and 

matrices (example no.4 shown in figure 1). Expressed by the formula in equation 2, where ℝ is a real 

number, (𝑉∗ ∗ 𝑉𝑖
∗) is dual spaces (known as p copies) and (𝑉 ∗ 𝑉𝑖) and vector spaces (known as q copies) 

to derive multilinear maps in finite space. 

𝑓: (𝑉∗ ∗ 𝑉𝑖
∗) ∗ (𝑉 ∗ 𝑉𝑖)  → ℝ 

Equation 33 

 

Figure 16 

http://www.big-data.tips/what-is-a-tensor 

To represent all given data, TensorFlow uses structure of tensor data, tensors are passing through 

and between operations for the computation graph. Tensor data structure in TensorFlow support a variety 

of element types, including signed and unsigned integers ranging in size from 8 bits to 64 bits, IEEE float 

and double types, a complex number type, and a string type (an arbitrary byte array) []. For instance, if 

the array of the numbers are defined, and importing tensorflow, numbers array can easily be presented as 

matrix and be the input for further calculations (as shown in the fig. 2). 
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Figure 17 

The Tensorflow‘s platfrom provides ability to define functions for tensors and automatically derive 

derivatives - Tensorflow is based on automatic differentation, where, by specifying graph in its operations, 

Tensorflow is automatically running the chain rule of calculus along the graph, with all setup of the 

derivatives of each specified operation (equation 5). In computer programming tensors are used as higher 

dimentional arrays to define abundance of data in the array of numbers. 

∇𝐴𝑓(𝐴) ∈ ℝ𝑚∗𝑛 = 

[
 
 
 
 
 
𝜕𝑓(𝐴)

𝜕𝐴11

𝜕𝑓(𝐴)

𝜕𝐴12

𝜕𝑓(𝐴)

𝜕𝐴21

𝜕𝑓(𝐴)

𝜕𝐴22

…
𝜕𝑓(𝐴)

𝜕𝐴1𝑛

…
𝜕𝑓(𝐴)

𝜕𝐴2𝑛

⋮ ⋮
𝜕𝑓(𝐴)

𝜕𝐴𝑚1

𝜕𝑓(𝐴)

𝜕𝐴𝑚2

⋱ ⋮

…
𝜕𝑓(𝐴)

𝜕𝐴𝑚𝑚]
 
 
 
 
 

 

Equation 34 https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781788390392/1/ch01lvl1sec9/calculus 

The one more application of TensorFlow platform is to provide directed graph as the numeric 

computation. In the figure X is shown the computation graph of h =  ReLU(Wx +  b), where the graph 

is presented as system, in which the inputs of the data x and the output h, variables of weight W, bias b and 

the functions (ReLU, MatMul, Add). This is important element in neural networks, which conducts an linear 

transformation of the input data and then feed to a linearity (rectified linear activation function in this case) 

[https://becominghuman.ai/an-introduction-to-tensorflow-f4f31e3ea1c0]. 

 

Figure 18 
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To implement the code on Tensorflow, variables must be expressly initialized. When variable is 

created, tensor is initializing process as the Variable() constructor. The initializer can be constants, 

sequences and random values []. In the code the bias vector b is set as constant and stays zero, the weights 

of the matrix is W and it initializes by random uniform. The shape of the tensor must be specified and 

shape is automatically converted as variable of the shape. In this instance, b is the first tensor with shape 

(50, 0) and W is the second tensor with shape (250, 50). 

 

Figure 19 

 Further possibilities and performance of TensorFlow’s calculations and implementation in real 

functional model will be explained in the corrosion detection model together with convolutional neural 

network. 

 

 

Keras is advanced neural network library which is built on top of TensorFlow and has interface 

with neural connection in Python programming language. By using Tensorflow with Keras (it is API 

(application programming interface) for TensorFlow) it derives an approachable, convenient and 

productive interface for solving deep learning problems, and giving high-level feedback. Keras gives 

possibility to build neural networks in more convenient way without calculating algebra of tensors in 

mathematical aspects, numerical calculations and without methods of process optimization. It empowers 

of the extensibility and capacity to fully run Keras on TPU or on large clusters of GPUs [], moreover, 

Keras allows to process and run exported models by using mobile devices or browser. Two main factors 

of Keras usability are distinguished as written: 

 Keras is an API created for better understanding for developer. Keras follows best practices for 

reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions 

required for common use cases, and it provides clear and actionable feedback upon user error. [] 
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 This ease of use does not come at the cost of reduced flexibility: because Keras integrates deeply 

with low-level TensorFlow functionality, it enables to develop highly hackable workflows where 

any piece of functionality can be customized. []  

 

The key of appropriate calculations in Keras are models and layers. The most usable and 

uncomplicated model is known as the Sequential model which is based on the layers of linear stack. Keras 

functional API is used for difficult and multiplex architectures, which empowers to construct the arbitrary 

graphs of layers, or write models entirely from scratch via subclasssing (shown in figure 5). []. 

 

Figure 20 

The process of layers stacking and selection of activation function by using method .add(): 

 

Figure 21 

Learning process implementation by using compile(), which is used for loss function of the 

crossentropy, selection of optimizers and metrics: 

 

Figure 22 

The configuration process of the optimizer (the concept of optimizers is defined as algorithms or methods 

used to change the attributes of the neural network such as weights and learning rate to reduce the losses. 

The main key of using optimizers is to solve optimization problems by minimizing the function []). In this 

way Keras is helping to fully control optimizer’s change of learning rate and momentum to find the 

solution to solve any problem, where in the process, source code is more extensible than subclassing []: 
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Figure 23 

The iteration process of trained data in batches by epochs (the concept of epoch is summarized as the full 

circle of the entire dataset when it is passing forward and backward neural network once, and divisions of 

the batches are used for reason of the size of epoch which is just too large to be fed into computer at once 

[]):  

 

Figure 24 

The evaluation of model loss and metrics: 

 

Figure 25 

The generation process of predictions over new data: 

 

Figure 26 


